SIAM J. SC1. COMPUT.

(© 1998 Society for Industrial and Applied Mathematics
Vol. 19, No. 4, pp. 1210-1233, July 1998

009

THE EFFICIENT COMPUTATION OF SPARSE JACOBIAN
MATRICES USING AUTOMATIC DIFFERENTIATION"

THOMAS F. COLEMAN! AND ARUN VERMA?

Abstract. This paper is concerned with the efficient computation of sparse Jacobian matrices
of nonlinear vector maps using automatic differentiation (AD). Specifically, we propose the use of a
graph coloring technique. bicoloring, to exploit the sparsity of the Jacobian matrix J and thereby
allow for the efficient determination of J using AD software. We analyze both a direct scheme and a

substitution process. We discuss the results of numerical experiments indicating significant practical
potential of this approach.

Key words. sparse Jacobian matrices, nonlinear systems of equations, nonlinear least squares,
graph coloring, bicoloring, automatic differentiation, computational differentiation, sparse finite dif-
ferencing, partition problem, NP-complete problems, ADOL-C

AMS subject classifications. 65K05, 65K10, 65H10, 90C30, 90C05, 68L10

PI1. S1064827595295349

1. Introduction. The efficient numerical solution of nonlinear systems of al-
gebraic equations F(z) : ®" — R™ usually requires the repeated calculation or es-
timation of the matrix of first derivatives, the Jacobian matrix J(z) € R™*™". In
large-scale problems, the matrix J is often sparse and it is important to exploit this
fact in order to efficiently determine, or estimate, the matrix J at a given argument .
This paper is concerned with the efficient calculation of sparse Jacobian matrices by
the judicious application of AD techniques. Specifically, we show how to define “thin”
matrices V and W such that the nonzero elements of J can easily be extracted from
the calculated pair (W7 J,JV). Given an arbitrary n-by-ty matrix V, the product
JV can be directly calculated using AD in the “forward mode”; given an arbitrary
m-by-ty matrix W, the product WTJ can be calculated using AD in the “reverse
mode.” e.g., [11, 13].

The forward mode of AD allows for the computation of product JV in time
proportional to ty - w(F), where w(F) is the time required to evaluate F. This fact
leads to the following practical question. Given the structure of a sparse Jacobian
matrix J, how can a matrix V be chosen so that the nonzeros of J can be easily
determined from the product JV? A good solution is offered by the sparse finite-
differencing literature {3, 4. 5, 7, 6, 8] and adapted to the AD setting [1]. Partition
the columns of J into a set of groups G¢, where the number of groups in G¢ is denoted
by |Gc| such that the columns in each group G € G¢ are structurally orthogonal.?
Each group G € G defines a column v of V: v; = 1 if and only if column 7 is in

*Received by the editors November 27, 1995; accepted for publication (in revised form) September
17, 1996: published electronically April 16. 1998. This research was partially supported by the
Applied Mathematical Sciences Research Program (KC-04-02) of the Office of Energy Research of
the U.S. Department of Energy under grant DE-FG02-90ER25013 and in part by the Advanced
Computing Research Institute, a unit of the Cornell Theory Center which receives major funding

from the National Science Foundation and 1BM Corporation, with additional support from New York .

State and members of its Corporate Research Institute.
bttp://www.siam.org/journals/sisc /19-4/29534.html

*Computer Science Department and Center for Applied Mathematics, Cornell University, Ithaca,
NY 14850 (coleman@cs.cornell.edu).

IComputer Science Department, Cornell University, Jthaca, NY 14850 (verma@cs.cornell.edu).
1Two nonzero n-vectors v, w are structurally orthogonal if v; » w; =0, i=1:n.

1210

COMPUTATION OF SPARSE JACOBIAN MATRICES 1211

group G; otherwise, v; = 0. It is clear that the nonzeros of J can be immediately
“identified” from the computed product JV. Graph coloring techniques, applied to
the column intersection graph of J. can be used to try and produce a partition G
with low cardinality |G¢|. This, in turn, induces a thin matrix V; i.e., construct
V € ™' where ty = |G¢|. However, it is not always possible to ensure that IGel
is small: consider a sparse matrix J with a single dense row.

Alternatively, the reverse mode of AD allows for the computation of the product
WTJ in time proportional to ty -w(F) where w(F) is the time required to evaluate
F.and W € R™*'W_ The “transpose” of the argument above can lead to an efficient
way to determine J. That is, apply graph coloring techniques to the row intersection
graph of J to induce a thin matrix W: compute W7 J via the reverse mode of AD
(takes time proportional to tw - w(F)); trivially extract the nonzeros of J from the
computed matrix W7 J. Of course it is easy to construct examples where defining a
thin matrix W is not possible—consider the case where J has a dense column.

Clearly there are problems where a row-oriented approach is preferable, and there
are problems where a column-oriented approach is better. Unfortunately, it is easy
to devise problems where neither approach is satisfactory: let J have both a dense
row and a dense column. This is exactly when it may pay to use both modes of AD
simultaneously: compute a pair (W7 J, JV), for suitable choices of W and V, and
extract the nonzero elements of J from this computed pair of thin matrices.

Our concern in this paper is with efficiency with respect to number of floating
point operations or flops. We do not concern ourselves with space requirements in
this study. However, it should be noted that the reverse mode of AD often Tequires
significantly more space than the forward mode: if space is tight then our suggested
approach, which involves application of both forward and reverse modes, may not be

possible. There is current research activity on reducing the space requirements of the
reverse mode of AD.

We note that an independent proposal regarding sparse Jacobian calculation is
made by Hossain and Steihaug [14]: a graph-theoretic interpretation of the direct
determination problem is given and an algorithm based on this interpretation is pro-
vided. In this paper we proffer a new direct method and we also propose a substitution
method, both based directly on the Jacobian structure. We compare our direct and
substitution methods, numerically, and we discuss the round-off properties of the
substitution method. In addition, we interface our graph coloring software to the au-

tomatic differentiator ADOL-C. [12] and report on a few preliminary computational
results.

The remainder of the paper is organized as follows. In section 2, we review the
relevant aspects of AD, both forward and reverse modes. In section 3, we formal-
ize the combinatorial problems to be solved both from a matrix point of view and
in terms of graph theory. We propose both a direct determination problem and a
substitution problem. In section 4. we propose “bicoloring” approaches to both the
direct determination and “determination by substitution” problems. The bicoloring
technique produces matrices V and W where JV is subsequently determined via the
forward mode of AD, and W7J is determined via the reverse mode. Typically, the
column dimensions of V and W will be small: the cost of the application of AD is
proportional to the sum of the column dimensions of V and W (times the work to
evaluate F).

In section 5 we present and discuss various numerical experiments. The experi-
ments indicate that our bicoloring approach can significantly reduce the cost of de-

1212 THOMAS F. COLEMAN AND ARUN VERMA

termining J (over one-sided Jacobian determination).

The substitution method we propose consistently outperforms the direct method.
However, the substitution calculation increases the chance of round-off contamination.
This effect is discussed in section 6. We end the paper in section 7 with some conclud-
ing remarks and observations on possible directions for future research. Specifically.
we note that while sparsity is a symptom of underlying structure in a nonlinear prob-
lem, it is not a necessary svmptom. Moreover. it is often possible to exploit structure
in the absence of sparsity and apply AD tools “surgically” to efficiently obtain the
Jacobian matrix J.

2. Basics of AD. AD is a chain rule based technique for evaluating the deriva-
tives analytically (and hence without any truncation errors) with respect to input
variables of functions defined by a high-level language computer program. In this
section we briefly review the basics of AD. borrowing heavily from [11, 13].

A program computing the function z = F(z),F : " — R™, can be viewed as a
sequence of scalar assignments v; = v(v;),—.. where the relation j — 7 indicates that
v; is computed before v;. Hence, the vector v can be thought of as a set of ordered
variables such that v;, j — 1. is computed before v; using the set of variables {vx|k —
J}- Here ¢ represent elementary functions, which can be arithmetic operations and /or
univariate transcendental functions.

Ordering the variables as above, we can partition variables v; into three vectors:

T = (v3,v2,....Vn) (independent),
y= (Un+l s Un42s -4 'U'n+p) (mtermedia‘te)v
2 = (Unipt1s Un+p+2:--- - 'U‘rl+p+'m) (dependent).

In general, the number of intermediate variables is much larger than the dimensions
of the problem, i.e.. p > m,n.

Assume that all these elementary functions 1; are well defined and have continu-
ous elementary partials ¢;; = %%lji, J < i. Assuming without loss of generality that the
dependent variables z do not themselves occur as arguments of elementary functions,
we can combine the partials c;; into the (p + m)-by-(n + p) matrix

_ 1<j<n+p
C= (Cn+i’j)]§i$p+m :

Unless elementary functions with more than two arguments are included in the
library, each row of C contains either one or two nonzero entries. We define a number?

g =nnz(C) < 2p.

Also, since work involved in an elementary function is proportional to the number
of arguments, it follows that

p+m

(2.1) w(F) = Z W(Ynaq) ~ q,

1=1

where ~ indicates proportionality. Because of the ordering relation the square matrix
C is upper trapezoidal with n—1 nontrivial superdiagonals. Thus C can be partitioned

21f M is a matrix or a vector then “nnz(M)” is the number of nonzeros in M.

COMPUTATION OF SPARSE JACOBIAN MATRICES 1213

as
2.2) c=1|4 L

\B M]
where

Ae RV, BeR™™" LeRPP, Mec R™P,

and L is strictly lower triangular. Application of the chain rule vields

o 5) (&) - (%)

If we eliminate the intermediate vector Ay from (2.3), we get an expression (the
Schur complement) for the Jacobian:

(2.4) J=B-M(L-I)"A=B+M({I-L)'A.

_ Since I— L is a unit lower triangular matrix, the calculation of the matrix products
A=(I-L)""Aand M = M(I — L)~? leads to two natural ways to compute J:

(2.5) J=B+MA or J=B+MA.

The alternative expressions for J given in (2.5) define the two basic modes of AD,
forward and reverse.

The forward mode corresponds to computing the rows of A, one by one, as the
corresponding rows of [A, L — I] are obtained from successive evaluation of elementary
functions. Since this amounts to solutions of n linear systems with lower-triangular
matrix [I — L], followed by multiplication of dense columns of A by M, the total
computational effort is roughly n - g or n - w(F). :

The reverse mode corresponds to computing M as a solution to the linear system
(I-L)TMT = MT. This back-substitution process can begin only after all elementary
functions and their partial derivatives have been evaluated. Since this amounts to
the solution of m linear systems with lower triangular matrix [I — L], followed by
multiplication of dense rows of M by A, total computational effort is roughly m - g or
m - w(F).

We are interested in computing products of the form JV and WTJ. Product JV
can be computed

JV = BV + M|(I - L)~} (AV)],

which can clearly be done in time proportional to ty - w(F) when V € R"*tv.
Analagously, product W7 J can be computed

WTJ=WTB 4+ [(WTM)(1 - L)""A,

which can be done in time proportional to tw - w(F) assuming W € Rm>tw

1214 THOMAS F. COLEMAN AND ARUN VERMA

An important subcase worthy of special attention is when F is a scalar function,
i,e., m = 1. In this case the Jacobian matrix corresponds to the transpose of the
gradient of F’ and is a single row vector. Note that the complexity arguments applied
to this case imply that the reverse mode of AD vields the gradient in time proportional
to w(F'), whereas the forward mode costs n-w(F). The efficiency of the forward mode
evaluation of the gradient can be dramatically increased—i.e., the dependence on n
is removed—if F has structure that can be exploited [2].

3. Partition problems and graph theory. Our basic task is to efficiently de-
termine thin matrices V, W so that the nonzero elements of J can be readily extracted
from the information (W7 J, JV). The pair of matrices (W7 J.JV) is obtained from
the application of both modes of AD: matrix W7 J is computed by the reverse mode;
the forward mode determines JV. The purpose of this section is to more rigorously
formulate the question of determining suitable matrices V, W first in the language of
“partitions.” and then using graph theoretic concepts.

We begin with an example illustrating the usefulness of simultaneously applying
both modes of AD, forward and reverse. Consider the following n-by-n Jacobian,
svmmetric in structure but not in value:

< B

VANVANRVAN
(3.1) J = %
0

ooooo

0

It is clear that a partition of columns consistent with the direct determination of
J requires n groups. This is because a “consistent column partition” requires that
each group contain columns that are structurally orthogonal, and the presence of a
dense row implies each group consists of exactly one column. Therefore, if matrix
V corresponds to a ‘“consistent column partition,” then V has n columns and the
work to evaluate JV by the forward mode of AD is proportional to n - w(F). By
a similar argument, and the fact that a column of J is dense, a “consistent row
partition” requires n groups. Therefore, if matrix W corresponds to a “consistent
row partition,” then W has n rows and the work to evaluate WTJ by the reverse
mode of AD is proportional to n - w(F).

DEFINITION 1. A bipartition of a matriz A is a pair (Gr,Gc) where Gg is a
row partition of a subset of the rows of A and G¢ is a column partition of a subset
of the columns of A.

In this example the use of a bipartition dramatically decreases the amount of
work required to determine J. Specifically, the total amount of work required is
proportional to 3 - w(F). To see this define V = (e1.€2 + €3+ €5 + €5); W = (1),
where we follow the usual convention of representing the ith column of the identity
matrix with e,. Clearly elements [, { are directly determined from the product JV;
elements A are directly determined from the product W7 J.

The basic idea is to partition the rows into a set of groups G and the columns
into a set of groups G¢. with |Gg|+ |G| as small as possible, such that every nonzero
element of J can be directly determined from either a group in Gg or a group in G¢.

DEFINITION 2. A bipartition (Gr.Gc) of a matriz A is consistent with direct
determination if for every nonzero a,; of A. either column j is in a group of G¢ which
has no other column having a nonzero in row i or row i is in a group of Gr which
has no other rows having a nonzero in column j.

COMPUTATION OF SPARSE JACOBIAN MATRICES 1215

Clearly, given a bipartition (Gr, G¢) consistent with direct determination. we can
trivially construct matrices W € Rm*ICrl v € Rm*ICc! such that A can be directly
determined from (W7 A, AV).

If we relax the restriction that each nonzero element of J be determined directly,
then it is possible that the work required to evaluate the nonzeros of J can be further
reduced. For example we could allow for a “substitution” process when recovering
the nonzeros of J from the pair (W7 J, JV). Figures 3.1 and 3.2 illustrate that a
substitution method can win over direct determination: Figure 3.1 corresponds to
direct determination; Figure 3.2 corresponds to determination using substitution.

Uin Do D3

Doy
Us;
O Uas Dys Dye
Usaq
Ues
Urg O Drg Drg
Ular
Uo7
Uhor
F1G. 3.1. Optimal partition for direct method.
(Ui Dy Aas \
Uy
Ua;
Clgy Dag DNgs Dy
Usg
Uea
g D Dqg Drg
Ugr
Uo7

\ Uo7)

F1G. 3.2. Optimal partition for substitution method.

In both cases elements labelled [are computed from the column grouping, i.e.,
calculated using the product JV; elements labelled A are calculated from the row
groupings, i.e., calculated using the product W7J. The matrix in Figure 3.1 indicates
that we can choose G¢ with |G¢| = 2 and Gg with |Gg| = 1 and determine all
elements directly. That is, choose V = (e; + €7.e4); choose W = (e + €4 + €7)-
Therefore, in this case the work to compute J satisfies w(J) ~ 3 - w(F). Note that
some elements can be determined twice, e.g., Ji;.

However, the matrix in Figure 3.2 shows how to obtain the nonzeros of J. using
substitution. in work proportional to 2 - w(F). Let V.= W = (e; + €4+ e7). Let
p1 be the (forward) computed vector p; = JV; let pJ be the (reverse) computed row

1216 THOMAS F. COLEMAN AND ARUN VERMA

vector p3 = WTJ. Then

U1z \
S
sy
Ua1 + Dyg
0 . |
D1 DZj . P = (L11+ Dy Doy Lz, Lgg + Oag, Dgs. Dgg, Dy, Drg. Dag).
Org + Dqy
Ugr
Oor
Do,

Il

Most of the nonzero elements are determined directly (no conflict). The remaining
elements can be resolved,

O74 = p1(7) = p2(7); Dyg = po(4) — Org; Us1 = p1(4) — Doya.

It is easy to extend this example so that the difference between the number of groups
needed, between substitution and direct determination, increases with the dimension
of the matrix. For example. a block generalization is illustrated in Figure 3.3: if
we assume | > 2w it is straightforward to verify that in the optimal partition the
number of groups needed for direct determination will be 3w and determination by
substitution requires 2w groups.

Fi1G. 3.3. Block ezample.

DEFINITION 3. A bipartition (Gr,G¢) of a matriz A is consistent with deter-
mination by substitution if there erists an ordering @ on elements a;; such that for
every nonzero a;; of A, either column j is in a group where all nonzeros in row 1.
from other columns in the group, are ordered lower than a,; or row i is in a group
where all the nonzeros in column j, from other rows in the group, are ordered lower
than a;.

In the usual way we can construct a matrix V from the column grouping G¢
and a matrix W from the row grouping Gg: for example, to construct the columns
of V associate with each group in G¢ a Boolean vector, with unit entries indicating

COMPUTATION OF SPARSE JACOBIAN MATRICES 1217

membership of the corresponding columns. We can now state our main problem(s)
more precisely.

The bipartition problem (direct). Given a matrix A, obtain a bipartition (Gg. G¢)
consistent with direct determination such that total number of groups, |Gr| + |G¢|,
is minimized.

The bipartition problem (substitution). Given a matrix A, obtain a bipartition
(Gr,Gc) consistent with determination by substitution such that the total number
of groups |G| + |G| is minimized.

The bipartition problems can also be expressed in terms of graphs and graph
coloring. This graph view is important in that it more readily exposes the relationship
of the bipartition problems with the combinatorial approaches used in the sparse finite-
differencing literature, e.g.. {3, 4, 5, 7, 6]. However, we note that the remainder of this
paper. with the exception of the error analysis in section 6, does not rely directly on
this graph interpretation.

To begin. we need the usual notion of a coloring of the vertices of a graph, the
definition of a bipartite graph, and the concept of path coloring [3, 7] specialized to
the bipartite graph case.

A p-coloring of a graph G = (V. &), where V is the set of vertices or nodes and £
is the set of edges, is a function

0:V—{1,2,...,p}

such that ¢(u) # ¢(v) if (u,v) € £. The chromatic number x(G) is the smallest p for
which G has a p-coloring. A p-coloring ¢ of G induces a partition of vertices V into p
groups Gi.k =1,2,....p, such that

Gr={ueV:ou)= k).

Given a matrix A € R™*", define a bipartite graph G,(A4) = ([V1.V,],€) where
Vi = {ri.r2,....Tm}, Vo = {c1 Co...., Cn}. ¢; corresponds to the jth column of A,
and r; corresponds to the ith row of A. “There is an edge, (ri,c;) € £ if a;; is nonzero
in A.

In [3, 7] a path p-coloring of a graph is defined to be a vertex coloring using p
colors with the additional property that every path of at least three edges uses at
least three colors. Here we need a slight modification of that concept appropriate for
the direct determination problem. We note that “color 0” is distinguished in that it
corresponds to the lack of a true color assignment: i.e., ¢(i) = 0 indicates that vertex
i is not assigned a color.

DerFINITION 4. Let G, = (V1.V2].€) be a bipartite graph. A mapping ¢ :
[V1.V2] — {0.1,...,p} is a bipartite path p-coloring of G, if the following conditions
hold.

1. Adjacent vertices have different assignments, i.e.. if (i.j) € & then ¢(i) #
o(j)-

2. The set of positive colors used by vertices in Vy is disjoint from the set of
positive colors used by vertices in V. i.e.. i€ Vy. j € Vo = {0(i) # ¢(j) or
o(1) = ¢(j) = 0}.

3. If vertices ¢ and j are adjacent to vertex k with ¢(k) = 0. then ¢(i) # ¢(j).

4. Ewvery path of three edges uses at least at least three colors.

The smallest number for which graph G, is bipartite path p-colorable is denoted
by xp(Gs)- Figure 3.4 shows a valid bipartite path p-coloring. Numbers adjacent to
the vertices denote colors. We note that Hossain and Steihaug [14] define a similar

1218 THOMAS F. COLEMAN AND ARUN VERMA

concept. However, their definition of path p-coloring does not allow for the “uncolor

assignment”; i.e., ¢(i) = 0. Consequently, a technique to remove empty groups is
needed [14].

Fi1G. 3.4. A valid bipartite path coloring.

We are now in position to state the graph analogy to the concept of a bipartition
consistent with direct determination.

THEOREM 3.1. Let A be an m-by-n matriz with corresponding bipartite graph
Go(A) = (V1,V2).€). The mapping ¢ : [V1,Vo] — {0.1,...,p} induces a bipartition
(Gr,Gc), with |Gr|+ |Gc| = p, consistent with direct determination if and only if
¢ is a bipartite path p-coloring of Gy(A).

Proof. (<) Assume that ¢ is a bipartite path p-coloring of Gy(A), inducing a
bipartition (Gg,G¢) of rows and columns of A. If this bipartition is not consistent
with direct determination, then there is a nonzero element a,; in the matrix for which
the definition “either column j is in a group of G¢ which has no other column having
a nonzero in Tow i, or row ¢ is in a group of Gg which has no other rows having a
nonzero in column j” doesn’t hold. This can happen only if one of the following cases
holds:

° qb(r,) = 0,¢(c;) # 0 and there exists a column g with aiq # 0 such that

(¢j) = ¢(cq)- But this contradicts condition 3.

. q;(cj) = 0,¢(r;) # 0 and there exists a row p with a,; # 0 such that ¢(r;) =
¢(rp). But this contradicts condition 3.

o ¢(r;) # 0.0(c;) # 0. There exists a column ¢ and a row p such that columns
J and g are in the same group with a,, # 0 and rows ¢ and p are in the same
group with ap; # 0. This implies ¢ is a 2-coloring of the path (r,—c; —r;—¢,),
a contradiction of condition 4.

(=) Conversely, assume that ¢ induces a bipartition consistent with direct deter-
mination of A. It is clear that conditions 1-3 must be satisfied. It remains for us to
establish condition 4: i.e., every path of three edges uses at least three colors. Suppose
there is a bicolored path: r; —c; — i — ¢, where ¢(r;) = ¢(rx), ¢(c;) = ¢(c;). Clearly
by condition 3 the two colors on this path are positive. It is easy to see that element

COMPUTATION OF SPARSE JACOBIAN MATRICES 1219

a;jx cannot be determined directly: there is a conflict in row group ¢(r;) = o#(c;) and
there is a conflict in column group ¢(cx) = ¢(c;), and these are the only two chances
to determine a . |

To capture the substitution notion the cyclic p-coloring definition {3] is modified
slightly and applied to a bipartite graph.

DEFINITION 5. Let A be an m-by-n matriz with corresponding bipartite graph
Go(A) = (W1,V2].€). A mapping ¢ : V1,V5] — {0,1,...,p} is a bipartite cyclic
p-coloring of Gy, if the following conditions hold.

1. Adjacent vertices have different assignments; i.e., if (i,5) € £ then ¢(i) #
o().

2. The set of positive colors used by vertices in V; is disjoint from the set of
positive colors used by vertices in Vy; i.e., i € V1. j € Vo = {¢(i) # ¢(j) or
6(i) = 6(j) = 0}.

3. If vertices 1 and j are adjacent to verter k with ¢(k) = 0, then ¢(i) # ¢(5).

4. Every cycle uses at least at least three colors.

The smallest number for which graph G, is bipartite cyclic p-colorable is denoted
by xc(Gp). Figure 3.5 shows a valid bipartite cyclic p-coloring. Note that only two
colors are necessary, whereas the bipartite path p-coloring in Figure 3.4 requires three
colors. The notion of a bipartition consistent with determination via substitution can
now be cleanly stated in graph-theoretic terms.

F1G. 3.5. A valid bipartite cyclic coloring.

THEOREM 3.2. Let A be an m-by-n matriz with corresponding bipartite graph
Go(A) = ([V1,V2],€). The mapping ¢ : (V1,V2) — {0,1,...,p} induces a bipartition
(GRr,Gc), with |Gr|+|Gc| = p, consistent with determination by substitution if and
only if ¢ is a bipartite cyclic p-coloring of Gy(A).

Proof. (=) Assume ¢ induces a bipartition consistent with determination by
substitution but ¢ is not a bipartite cyclic p-coloring of G,(A). Clearly conditions
1-2 must hold; it is easy to see that if condition 3 doesn’t hold then not all nonzero
elements can be determined. The only nontrivial violation is condition 4: there is a
cycle which has only two colors; i.e., all the vertices € V; in the cycle have the same

1220 THOMAS F. COLEMAN AND ARUN VERMA

color c;, and all the vertices € V5 in the cycle have the same color co. Note that
neither c; nor cz can be equal to 0, since a node colored 0 in a cycle would imply
that its adjacent vertices are both colored differently, implying that there are at least
three colors. Consider the submatrix A, of A, corresponding to this cycle. Submatrix
A has at least two nonzeros in each row and in each column, since each vertex has
degree 2 in the cycle. But since we are considering substitution methods only, at least
one element of A, needs to be computed directly. Clearly there is no way to get any
element of this submatrix directly, a contradiction.

(«=) Conversely, assume that ¢ is a bipartite cyclic p-coloring of G(A) but that bi-
partition (Gr,Gc) induced by ¢ is not consistent with determination by substitution.
But edges (nonzeros) with one end assigned color “0” can be determined directly: by
the definition of bicoloring there will be no conflict. Moreover, every pair of positive
colors induces a forest (i.e., a collection of trees); therefore, as shown in (3], the edges
(nonzeros) in the induced forest can be resolved via substitution. 0

The two bipartition problems can now be simply stated in terms of optimal bi-
partite path and cyclic p-colorings.

The bipartite path p-coloring problem. Determine a bipartite path p-coloring of
Gy (A) with the smallest possible value of p; i.e., p = xp(Gp)-

The bipartite cyclic p-coloring problem. Determine a bipartite cyclic p-coloring of
Gv(A) with the smallest possible value of p; i.e., p = x(Gp)-

The graph theoretic view is useful for both analyzing the complexity of the combi-
natorial problem and suggesting possible algorithms, exact or heuristic. In fact, using
the p-coloring notions discussed above, and an approach similar to that taken in {3],
it is easy to show that corresponding decision problems are NP-complete. Garey and
Johnson [9] provide an excellent introduction to complexity theory.

Bipartite cyclic p-coloring decision problem (CCDP). Given an integer p > 3 and
an arbitrary bipartite graph G, is it possible to assign a cyclic p-coloring to nodes of
G?

Bipartite path p-coloring decision problem (PCDP). Given an integer p > 3 and
an arbitrary bipartite graph G, is it possible to assign a bipartite path p-coloring to
nodes of G?

The proofs are a straightforward adaptation of those in [3], and we omit them here.
The upshot of these (negative) complexity results is that in practice we must turn
our attention to (fast) heuristics to approximately solve the cyclic and path coloring
problems. In the next section we present simple, effective, and “easy-to-visualize”
heuristics for these two combinatorial problems.

Finally, it is easy to establish a partial ordering of chromatic numbers:

(3.2) Xc(Gb(A)) < xp(Gs(A4)) < min(x(G(AT)), x(G(A))),

where G(M) refers to the column intersection graph of matrix M; x(G(M)) is the
(usual) chromatic number of graph G(M).

The first inequality in {3.2) holds because if ¢ is a bipartite path p-coloring then
¢ is a bipartite cyclic p-coloring; the second inequality holds because a trivial way to
satisfy conditions 1-4 of Definition 4 is to assign “0” to all the row (column) nodes and
then use positive colors on all the column (row) nodes to satisfy condition 3. This
ordering supports the tenet that use of bipartition/bicoloring is never worse than
one-sided calculation and that a substitution approach is never worse than a direct
approach (in principle).

4. Bicoloring. The two combinatorial problems we face, corresponding to direct
determination and determination by substitution, can both be approached in the

COMPUTATION OF SPARSE JACOBIAN MATRICES 1221

following way. First, permute and partition the structure of J: J = P-J-Q = [JelJr],
as indicated in Figure 4.1. The construction of this partition is crucial; however, we
postpone that discussion until after we illustrate its utility. Assume P = Q = I and
J = [Jc|JR].

JrR Jr
Jc Jc

Fi1G. 4.1. Possible partitions of the matriz J = P-J - Q.

Second, define appropriate intersection graphs gé,g,’q based on the partition
[Jc|JR]; a coloring of Qé vields a partition of a subset of the columns G, which
defines matrix V. Matrix W is defined by a partition of a subset of rows G, which
is given by a coloring of Q,’Q. We call this double coloring approach bicoloring. The
difference between the direct and substitution cases is in how the intersection graphs
G, G, are defined and how the nonzeros of J are extracted from the pair (W7J, J V).

4.1. Direct determination. In the direct case the intersection graph G} is
defined: GL = (VL,€L) where
e vertex j € V} if nnz (column j N J¢) # 0;
o (r,s) e EL ifr e VL,s € VL, 3k such that Ji, # 0,Jxs # 0 and either
(k,r) € Jc orik,s) € Je.

The key point in the construction of graph GL. and why G, is distinguished from
the usual column intersection graph, is that columns r and s are said to intersect
if and only if their nonzero locations partially overlap in J¢: i.e., columns r and s
intersect if Jx, - Jks # 0 and either (k,r) € Jo or (k,s) € Jc for some k.

The “transpose” of the procedure above is used to define Gk = (V§,EL). Specif-
ically, G = (V}, &%) where

e vertex i € V} if nnz(row i N Jg) # 0;
o (r,s) € ~S}2 if r € V]]i,s € V}?_, 3k such that Jx # 0,Jsx # 0 and either
(r,k) € Jg or (s, k) € Jg.

In this case the reason graph G} is distinguished from the usual row intersection
graph is that rows 7 and s are said to intersect if and only if their nonzero locations
partially overlap in Jg: rows r and s intersect if J,x - Jox # 0 and either (r,k) € Jg
or (s, k) € Jg for some k.

The bipartition (Gr,Gc). induced by coloring of graphs G and GL, is consistent
with direct determination of J. To see this consider a nonzero element (7,j) € Jc:
column j is in a group of G¢ (corresponding to a color) with the property that no
other column in G¢ has a nonzero in row i. Hence, element (i,j) can be directly
determined. Analogously, consider a nonzero element (r,s) € Jg: row r will be in a
group of Gr (corresponding to a color) with the property that no other row in Gg
has a nonzero in column s. Hence, element (r,s) can be directly determined. Since
every nonzero of J is covered, the result follows.

1222 THOMAS F. COLEMAN AND ARUN VERMA

Ezample. Consider the example Jacobian matrix structure shown in Figure 4.2
with the partition (J¢, Jr) shown.

J] 1 J] 3 J] 4
‘]23
1| T Jss
Ja2 Ju
L J 52 J53

FiG. 4.2. Exzample partition.

(To

g,

F1G. 4.3. Graphs Gc and Gr (direct approach).

The graphs G¢c and Ggr formed by the algorithm outlined above are given in
Figure 4.3. Coloring G¢ requires three colors, while G can be colored in two. Boolean
matrices V and W can be formed in the usual way: each column corresponds to a
group (or color), and unit entries indicate column {or row) membership in that group:

1 0O .]1] 0 X
010 0 0 X
v=lo o 1|, w=|J x x|,
0 0 O 0 X 0
0 00 0 Js2 Js3
1 0
0 1
w=11 o0 WTJ___(X Jz2 Jiz Jig Jss)_
0 1 X J42 J23 J44 0
00

Clearly, all nonzero entries of J can be identified in either JV or WTJ.

4.2. Determination by substitution. The basic advantage of determination
by substitution in conjunction with partition J = {Jc|JRg] is that sparser intersection

COMPUTATION OF SPARSE JACOBIAN MATRICES 1223

graphs GF, Gk can be used. Sparser intersection graphs mean thinner matrices V.w
which, in turn, result in reduced cost.
In the substitution case the intersection graph Gl is defined as GL = vL.gl)

where

e vertex j € VL if nnz (column j N Jg) # 0, and

o (r,s) € && if r € VL,s € VL. 3k such that Jy, # 0,Jxs # O and both

(k,r) € Jc, (k,s) € Je-
Note that the intersection graph Gf = (V%,&L) captures the notion of two columns
intersecting if there is overlap in nonzero structure in Jc: columns r and s intersect
if Jkr - Jks # 0 and both (k,7) € Jc, (k.s) € Jc for some k. It is easy to see that &L
is a subset of the set of edges used in the direct determination case.
The “transpose” of the procedure above is used to define g}{ = (V,QS }?) Specif-

ically, G% = (V%,&L) where

e vertex i € V}’2 if row i € Jg and nnz(row i N Jg) # 0, and

o (r,5) € E}Q if r € V}{,s € V};, 2k such that Jx # 0,Ja # 0 and both

(r.k) € Jr, (s,k) € Jg.

The intersection graph Gf, = (V% £%) captures the notion of two rows intersecting if
there is overlap in nonzero structure in Jg: rows r and s intersect if J,x - Jox # 0 and
(r.k) € Jr and (s.k) € Jg for some k. It is easy to see that £% is a subset of the set
of edges used in direct determination.

All the elements of J can be determined from (W7J, JV) by a substitution pro-
cess. This is evident from the illustrations in Figure 4.4.

F1G. 4.4. Substitution orderings.

Figure 4.4 illustrates two of four possible nontrivial types of partitions. In both
cases it is clear that nonzero elements in the section labelled “1” can be solved for
directly—by the construction process they will be in different groups. Nonzero ele-
ments in “2” can either be determined directly or will depend on elements in section
“1". But elements in section “1” are already determined (directly) and so, by sub-
stitution, elements in “2” can be determined after “1”. Elements in section “3” can
then be determined, depending only on elements in “1” and “2”, and so on until the
entire matrix is resolved.

Ezample. Consider again the example Jacobian matrix structure shown in Fig-
ure 4.2. Column and row intersection graphs corresponding to substitution are given
in Figure 4.5. Note that Gc is disconnected and requires two colors; Gr is a simple
chain and also requires two colors.

The coloring of G¢ and Gr leads to the following matrices V, W and the resulting

1224 THOMAS F. COLEMAN AND ARUN VERMA

(28]

2 1

1@ @
@)

F1G. 4.5. Graphs Gc and Gr for substitution process.

n

computation of JV, WTJ:

1 0 J]] + J]3 0

01 X 0
V=]120 JV = J31 X y

00 0 X

00 Js3 Js2

i J: J J J:
wTJ = X 32 13 14 35)
(X Jag Joz Jss O

I
oo+ O+
oOHOHO

It is now easy to verify that all nonzeros of J can be determined via substitution.

4.3. How to partition J. We now consider the problem of obtaining a useful
partition [Jc|Jg] and corresponding permutation matrices P,Q, as illustrated in Fig-
ure 4.1. A simple heuristic is proposed based on the knowledge that the subsequent
step, in both the direct and the substitution method, is to color intersection graphs
based on this partition.

Algorithm MNCO builds partition J¢ from the bottom up and partition Jg from
right to left. At the kth major iteration either a new row is added to Jc or a new
column is added to Jg; the choice depends on considering a lower bound effect:

p(JE) + max(p(Jc), nnz(r)) < (p(Jc) + max(p(J}), nnz(c)),

where p(A) is the maximum number of nonzeros in any row of matrix A, r is a row
under consideration to be added to Jc, and ¢ is a column under consideration to be
added to Jr. Hence, the number of colors needed to color Q(I; is bounded below by
p(Jc); the number of colors needed to color G4 is bounded below by p(J%).

In algorithm MNCO, matrix M = J(R,C) is the submatrix of J defined by row
indices R and column indices C: M consists of rows and columns of J not yet assigned
to either J¢ or Jg.

MiNniMUM NONZERO COUNT ORDERING (MNCO)
1. Initialize R=(1:m),C=(1:n), M = J(R,C)
2. Find r € R with fewest nonzeros in M
3. Find c € C with fewest nonzeros in M

COMPUTATION OF SPARSE JACOBIAN MATRICES 1225

4. Repeat Until M = Q
if p(JF) +max(p(Jc), nnz(r)) < (p(Jc)+max(p(JE), nnz(c))

(LB)
Je=Jc U{rnC)
R=R-{r}

else
Jr=Jr U (cNR)
C=C-{c}

end if

M = J{(R,C).

end repeat

Note that, upon completion, Jgr,Jc have been defined; the requisite permutation
matrices are implicitly defined by the ordering chosen in MNCO.

5. Bicoloring performance. In this section we present results of numerical
experiments. The work required to compute the sparse Jacobian matrix is the work
needed to compute (W7 J, JV) which, in turn, is proportional to the work to evaluate
the function F' times the sum of the column dimensions of the Boolean matrices
Ve RV W € R™>**W _ The column dimension sum ty -+t is equal to the number
of colors used in the bicoloring. In our experiments we compare the computed coloring
numbers required for the direct and substitution approaches. We also compute the
number of colors required by one-sided schemes: a column partition alone corresponds
to the construction of V' based on coloring the column intersection graph of J; a
row partition alone corresponds to the construction of W based on coloring the row
intersection graph of J. The latter case leads to the application of the reverse mode
of AD (alone), whereas the former case leads to use of the forward mode.

Both the direct and substitution methods require colorings of their respective pairs
of intersection graphs G, G&. Many efficient graph coloring heuristics are available:
in our experiments we use the incidence degree (ID) ordering {6].

We use three sources of test matrices: a linear programming testbed with results
reported in Table 5.1 and summarized in Table 5.2; the Harwell-Boeing sparse matrix
collection, with results reported in Tables 5.3 and 5.4; self-generated m-by-n “grid
matrices” with results given in Tables 5.5 and 5.6. A grid matrix is constructed in the
following way. First, approximately \/n of the columns are chosen, spaced uniformly.
Each chosen column is randomly assigned D EN S-m nonzeros. Second, approximately
v/m of the rows are chosen, spaced uniformly. Each chosen row is randomly assigned
DENS - n nonzeros. We vary DENS as recorded in Table 5.5.

For each problem we cite the dimensions of the matrix A and the number of
nonzeros {nnz). The experimental results we report are the number of colors required
by our bicoloring approach, both direct and substitution, and the number of colors
required by one-sided schemes.

5.1. Observations. First, we observe that the bicoloring approach is often a
significant improvement over one-sided determination. Occasionally, the improvement
is spectacular, e.g., “cannes 715”. Improvement in the Harwell-Boeing problems
are generally more significant than on the LP collection in the sense that bicoloring
significantly outperforms both one-sided possibilities. This is partially due to the{act
that the matrices in the LP collection are rectangular, whereas the matrices in the
Harwell-Boeing collection are square: calculation of the nonzeros of J from W7TJ
alone can be quite attractive when J has relatively few rows. The grid collection

1226 THOMAS F. COLEMAN AND ARUN VERMA

TABLE 5.1
LP constraint matrices {http://www.netlib.org/lp/data/).

Bicoloring) One-sided
| Name m n nnz | Direct Substitution | Column Row
standata 359 1274 3230 9 7 745 10
scagr2b 471 671 1725 8 5 10 9
scagr7 129 185 465 8 5 10 9
stair 356 620 4021 36 29 36 36
blend 74 114 522 16 14 29 16
vtp.base 198 347 1052 12 10 38 12
agg 488 615 2862 19 13 43 19
agg?2 516 758 4740 26 21 49 43
agg3 516 758 4756 27 21 52 43
bore3d 233 334 1448 28 24 73 28
israel 174 316 2443 61 49 119 136
boeingl 351 726 3827 32 28 315 32
boeing?2 166 305 1358 23 18 93 23
tuff 333 630 4563 21 16 114 25
| adlittle 56 138 424 11 10 27 11
TABLE 5.2

Totals for LP collection.

Bicoloring | 1-sided coloring
Direct Substitution | Column Row
337 270 1753 452

displays the advantage of bicoloring to great effect—grid matrices are ideal bicoloring
candidates.

In general the advantage of substitution over direct determination is not as great
as the difference between bicoloring and one-sided determination. Nevertheless, fewer
colors are almost always needed, and for expensive functions F' this can be important.
For most problems the gain is about 20% although it can approach 50%, e.g., “watt2”.

5.2. Interface with ADOL-C. We have interfaced our coloring and substitu-
tion routines with the ADOL-C software. The C++ package ADOL-C {12] facilitates
the evaluation of first- and higher-order derivatives of vector function, defined by
programs written in C or C++.

We compare the time needed on a sample problem with respect to five approaches:
AD /bicoloring (direct),

AD /bicoloring (substitution),
e AD/column coloring (forward mode),
e AD/row coloring {reverse mode),
e FD (sparse finite differencing based on column coloring).

The test function F we use is a simple nonlinear function: define f(a) = a*+5-a,
let N(i) be the index set of nonzeros in row i of the Jacobian matrix, and define
Fi(z) = Zje N(i) f(z;). The Jacobian matrix (and thus the sparsity pattern) is
a 10-by-3 block version of Figure 3.3; i.e., | = 10, w = 3. Problem dimensions
n = 100, 200, 400, as indicated in Figure 5.1, were used in the experiments.

Our results, portrayed in Figure 5.1, suggest the following order of execution time
requirement by different techniques:

FD > AD/row > AD/coiumn > AD /bicoloring{direct)
> AD /bicoloring(substitution).

‘COMPUTATION OF SPARSE JACOBIAN MATRICES
TABLE 5.3
The Harwell-Boeing collection (ftp from orion.cerfacs.fr).

Bicoloring 1-sided coloring

Name m n nnz | Direct Substitution | Column Row
watt2 1856 1856 11550 20 12 128 65
cannes 256 256 256 2916 32 23 83 83
cannes 268 268 268 1675 18 12 33 33
cannes 292 292 292 2540 17 17 35 35
cannes 634 634 634 7228 28 21 28 28
cannes 715 715 715 6665 22 18 105 105
cannes 1054 1054 1054 12196 31 23 35 35
cannes 1072 1072 1072 12444 32 24 35 35
chemimp/impcolc 137 137 411 6 4 8 9
chemimp/impcold 425 425 1339 6 5 11 11
chemimp/impcole 225 225 1308 21 14 21 31
chemwest /west0067 67 67 294 9 7 9 12
chemwest /west0381 381 381 2157 12 9 29 50
chemwest /west0497 497 497 1727 22 19 28 55
smtape/gent113 113 113 655 19 13 20 27
| smtape/arc130 130 130 1282 25 23 124 124

TABLE 5.4

Totals for Harwell-Boeing collection.

Bicoloring 1-sided coloring
Direct Substitution | Column Row
320 244 732 738

Note that FD requires more time than AD/column even though the same coloring
is used for both. This is because the work estimate ty - w(F) is actually an upper
bound on the work required by the forward mode where ty is the number of columns
of V. This bound is often loose in practice, whereas ty - w(F) is tight for finite
differencing since the subroutine to evaluate F is actually called {independently) ty

times.

0.18

Performance graph ot difterent sparse app

0.16
0.14

0.12}

Time (in seconds)

T

T

AD--BiColoring-Direct -~~~

AD-BiColoring-Substitution

F1G. 5.1. A comparison of different sparse techniques.

200

250
Problem

300
Size

350

Another interesting observation is that the reverse mode calculation (AD /Tow) is

1228 THOMAS F. COLEMAN AND ARUN VERMA

TABLE 5.5
Grid matrices.
Bicoloring 1-sided coloring
m n DENS | Direct Substitution | Column Row
10 10 0.44 5 4 6 7
10 10 0.75 6 5 7 8
10 10 0.98 6 6 9 9
10 20 0.55 8 & 12 8
10 20 0.89 8 8 19 10
10 20 1.00 8 8 20 10
25 25 0:52 11 10 18 15
25 25 0.61 11 10 21 19
25 25 0.99 10 10 25 25
25 100 0.56 15 16 61 24
25 100 0.67 15 15 81 24
25 100 1.00 15 15 100 25
100 100 0.52 20 20 84 74
100 100 0.64 20 20 95 93
100 100 1.00 20 20 100 100
100 400 0.53 30 30 282 98
100 400 0.64 30 30 352 100
100 400 1.00 30 30 400 100
TABLE 5.6
Totals for grid matrices.

Bicoloring 1-sided coloring

Direct Substitution | Column Row

268 265 | 1692 749

about twice as expensive as the forward calculation (AD/column). This is noteworthy
because in this example, based on the structure Figure 3.1, the column dimensions of
V and W are equal. This suggests that it may be practical to weigh the cost of the
forward calculation of Juv versus the calculation of w”.J, where w,v are vectors. We
comment further on this aspect in section 7.

6. Substitution and roundoff. In general, the substitution approach requires
fewer colors and therefore is more efficient,® in principle, than direct determination.
However, there is a possibility of increased round-off error due to the substitution
process. In fact an analogous issue arises in the sparse Hessian approximation context
[3, 7, 15] where, indeed, there is considerable cause for concern. The purpose of this
section is to examine this question in the AD context. The bottom line here is that
there is less to worry about in this case. In the sparse Hessian approximation case
significant error growth occurs when the finite-difference (FD) stepsize varies over the
set of FD directions; however, in our current setting this is not an issue since the
“stepsize” is equal to unity in all cases.

First we consider the number of substitutions required to determine any nonzero
of J from (W7 J, JV) where matrices W,V are chosen using our substitution strategy.
There is good news: similar to the sparse Hessian approximation situation {3, 7, 15],
the number of dependencies, or substitutions, to resolve a nonzero of J can be bounded
above by 1 |(m+n—2)].

30f course a substitution method does incur the extra cost of performing the substitution calcu-
lation. However, this can be done very efficiently, and the subsequent cost is usually negligible.

COMPUTATION OF SPARSE JACOBIAN MATRICES 1229

THEOREM 6.1. Let ¢ be a bipartite cyclic p-coloring of Gy(J). Then, ¢ corre-
sponds to a substitution determination of J and each unknown in J is dependent on
at most m+n — 2 unknowns. Moreover, it is possible to order the calculations so that
the mazimum number of substitutions is less than or equal to 3 |(m +n — 2)].

Proof. First, edges (nonzeros) with one end assigned color “0” can be determined
directly: by the definition of bicoloring there will be no conflict. Second, every pair
of positive colors induces a forest (i.e., a collection of trees in Gy(J)); therefore, the
edges (nonzeros) in the induced forest can be resolved via substitution {3]. Hence, all
edges (nonzeros) can be resolved either directly or by a substitution process and the
worst case corresponds to a tree with m + n — 1 edges vielding an upper bound of
m + n — 2 substitutions. However, it is easy to see that the substitution calculations
can be ordered to halve the worst-case bound yielding at most % |(m~+n—2)| substitu-
tions. i

Next we develop an expression to bound the error in the computed Jacobian.
Except for the elements that can be resolved directly, the nonzero elements of the
Jacobian matrix can be solved for by considering each subgraph induced by two
positive colors (directions), one color corresponding to a subset of rows, one color
corresponding to a subset of columns. Let us look at the subgraph Gp,q induced by
colors p (columns), g (rows). Let 2, = Jup, yg = wZ J. R4 be the set of rows colored
g, and Cp, be the set of columns colored p, where

Wq = E €, Up = E €;.
1€Ry 1€Cp
Let

— | (o] A T
p = 2p + €p, yq—yq—I—fq

¥,

denote the quantities computed via AD. Note that the errors introduced here are only
due to the AD process and are typically very small.
In the solution process an element J;; is determined:

. ,
Jij = Zp; — L Jik or Jij =yg; — Z Jkj
keN(r;) keNic;)

depending on whether a column equation (of form Jv) or a row equation {of form
wTJ) is used. Here, N(r;) denotes set of neighbors of row i in Gp.g» and N{c;)
denotes set of neighbors of column j in G, 4.

Assume that J?“4! = F'(z) denotes the actual Jacobian matrix; hence,

actual __ ’ actual actual __ actual
Ji = 2p; — Z Jik or Jj =Yq; — E Jiey e
kEN(r;) ke N{c;)

Define an error matrix E = J — J%°"uel and let ¢;; be the difference

—_—
— <

D T y Jik or ¢€;; = quj - z ka

o

k€N (r:)U{s) ke N{c;)u{i}

C'L'j

depending on the way element J;; was computed.
We take into account the effect of rounding errors by letting €;; be equal to ¢;;
plus the contribution from rounding errors due to use of the equation that determines

1230 THOMAS F. COLEMAN AND ARUN VERMA

Jij- We can now write

(6.1) E;j'—'Eij-F Z E; or Cfij:E-ij-F Z Ekj

kEN(r:) kEN(c;)

again, depending on the way J;; is calculated.
Moreover, we let €,,4, be the constant:

€mazr = maxi,jlf:t:jl'
Note that €54, has no contribution from stepsizes, unlike results for finite differ-

encing (3, 15].
THEOREM 6.2. If J is obtained by our substitution process then

1
|Eqj| < §L(m+ n)| - €maz-

Proof. From equation (6.1),

(6.2) €5 = Eij + Z Eix
keN(r;)

or

(6.3) ¢;=Ej+ . Eij
keN(c;)

Let us assume, without loss of generality, that equation (6.2) holds. This implies a
bound

|Eijl <légl+ Y |El-
keN{r;)

But the same decomposition can be applied recursively to each E;x, and using Theo-
rem 6.1, the result follows. a

There are two positive aspects to Theorem 6.2. First, unlike the sparse ¥'D sub-
stitution method for Hessian matrices {3, 7, 15|, there is no dependence on a variable
stepsize: in AD the stepsize is effectively uniformly equal to unity. Second, there is no
cumulative dependence on nnz(J) but rather just on the matrix dimensions, m + n.
However, there is one unsatisfactory aspect of the bound in Theorem 6.2: the bound
is expressed in terms of €y, DUt €mq, is not known to be restricted in magnitude.
A similar situation arises in the (3, 7, 15]. Nevertheless, as illustrated in the example
discussed below, €,,4, is usually modest in practice.

We conclude this section with a small experiment where we inspect final accuracies
of the computed Jacobian matrices. The test function F is a simple nonlinear function
as described in section 5.2.

In Table 6.1 “FD1” is the sparse FD computation [6] using a fixed stepsize
a = e =~ 1078 “FD2" refers to the sparse FD computation {6] using a vari-
able stepsize: a is uniformly varied in the range {—‘4[‘—,4 - v/€]. The column labelled
“Rel error” records ||ERR)||2, where the nonzeros of ERR correspond to the nonzeros

actual computed
JiS J3;

of J: for J;; # 0, ERR;; = —

actual
JE

COMPUTATION OF SPARSE JACOBIAN MATRICES 1231

The general trends we observe are the following. First, similar to the results
reported in [1] for forward-mode direct determination, the Jacobian matrices deter-
mined by our bicoloring/AD approach are significantly and uniformly more accurate
than the FD approximations. This is true for both direct determination and the
substitution approach. Second, the direct approach is uniformly more accurate than
the substitution method; however, the Jacobian matrices determined via substitution
are sufficiently accurate for most purposes, achieving at least 10 digits of accuracy
and usually more. Finally, on these problems there is relatively little difference in
accuracy between the fixed step (FD1) method and the variable step {FD2) method.
However, as illustrated in [5], it is easy to construct examples where the variable step
(FD2) approach produces unacceptable accuracy.

TABLE 6.1
Errors (sampie nonlinear problem).

Direct ‘Substitution FD1 FD2
Size Rel error Rel error Rel error Rel error
100 | 1.30 x 1015 | 7.63x 10-33 | 7.06 x 10-6 | 2.06 x 10—3
200 | 293 x107% | 419%x 10722 | 1.06 x 10-5 | 6.72 x 10-5
400 | 9.62x 10715 | 2.02x 1017 | 4.77x 1075 | 9.81 x 10~%
800 | 457 x 10714 | 1.45x 10710 | 9.21 x 10~5 | 8.49 x 104

7. Concluding remarks. We have proposed an effective way to compute a
sparse Jacobian matrix J using AD. Our proposal uses a new graph technique, bi-
coloring, to divide the differentiation work between the two modes of AD, forward
and reverse. The forward mode computes the product JV for a given matrix V; the
reverse mode computes the product WTJ for a given matrix W. We have suggested
ways to choose thin matrices V, W so that the work to compute the pair (W7 J, J V)
is modest and so that the nonzero elements of J can be readily extracted.

Our numerical results strongly support the view that bicoloring/AD is superior to
one-sided computations (both AD and FD) with respect to the order of work required.
Of course AD approaches offer additional advantages over FD schemes: significantly
better accuracy, no need to heuristically determine a stepsize rule, e.g., [10], and the
sparsity pattern need not be determined a priori {12].

Implicit in our approach is the assumption that the cost to compute Jv by forward
mode AD is equal to the cost of computing w”J by reverse mode AD, where v, w are
vectors. This is true in the order of magnitude sense—both computations take time
proportional to w(F)—but the respective constants may differ widely. It may be
pragmatic to estimate “weights” w;, w2, with respect to a given AD tool, reflecting
the relative costs of forward and reverse modes. It is very easy to introduce weights
into algorithm MNCO (section 4.3) to heuristically solve a “weighted” problem,
minw;X3 + wzX2, where x; is the number of row groups (or colors assigned to
the rows) and x» is the number of column groups (or colors assigned to the columns).
The heuristic MNCO can be changed to address this problem by simply changing
the conditional (LB) to the following:

if wy - p(JE) + we -max(p(Je),nnz(r)) <w; -p(Je)+ wo - max(p(J};),nnz(c)).’

Different weights produce different allocations of work between forward and re-
verse modes, skewed to reflect the relative costs. For example, consider a 50-by-50
grid matrix with DENS = 1 (see section 5), and let us vary the relative weighting of

1232 THOMAS F. COLEMAN AND ARUN VERMA

forward versus reverse mode: w; = 0:.25 : 1, and wo = 1 — w;. The results of our
weighted bicoloring approach are given in Table 7.1.

TABLE 7.1
Weighted problem results.

w1 X1 X2
0.00 | 50 0 |
0.25 | 16 7
050 | 10 | 10

0.75 71 16
1.00 0] 50

Finally we note that the bicoloring ideas can sometimes be used to efficiently
determine relatively dense Jacobian matrices provided structural information is known
about the function F. For example, suppose F : R" — R™ is a partially separable
function, F = F; + Fo + --- + F;, where F; : " — R™, i = 1,...,t, and each
component function F; typically depends on only a few components of z. Clearly
each Jacobian function J; is sparse while the summation J = Z:zl J; ‘may or may
not be sparse depending on the sparsity patterns. However, if we define a “stacked”
function F,

Fi(z)

Foi
ﬁ"(w) = ,(z)
F‘tix)

then the Jacobian of F is

L
Il

Clearly J is sparse and the bicoloring/AD technique can be applied to J, possibly
vielding a dramatic decrease in cost. Specifically, if J is dense {a possibility) then
the work to compute J without exploiting structure is n - w(F'), whereas the cost
of computing J via bicoloring/AD is approximately xc{Gy(J)) - w(F) flops, where
x(Gy(J)) is the minimum number of colors required for a bipartite cyclic coloring of
graph Gy(J). Typically, Xe(Go(J)) << n. The idea of applying the bicoloring/AD
technique in a structured way is not restricted to partially separable functions.

Acknowledgments. We are very grateful to Andreas Griewank, his student
Jean Utke, and his colleague David Juedes for helping us with the use of ADOL-C.

REFERENCES

[1] B. M. AVERICK, J. J. MORE. AND C. H. BiscHOF, Computing Large Sparse Jacobian Matrices
Using Automatic Differentiation, Preprint MCS-P348-0193, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, 1L, April 1993

i2] C. H. BiscHOF, A. BOUARICHA, P. M. KHADEMI, AND J. J. MORE, Computing gradients in

large-scale optimization using automatic differentiation, SIAM J. Alg. Discrete Methods,
7 (1986), pp. 221-235.

(12]

COMPUTATION OF SPARSE JACOBIAN MATRICES 1233

- F. COLEMAN AND J.-Y. Cal, The cyclic coloring problem and estimation of sparse Hessian
matrices, SIAM J. Alg. Discrete Methods, 7 (1986), pp. 221-235.

. F. CoLemAN, B. S. GARBOW, AND J. J. MORE, Software for estimating sparse Jacobian
matrices, ACM Trans. Math. Software, 10 (1984), pp. 329-345.

matrices, ACM Trans. Math. Software, 11 (1985), pp. 363-377.

- F. CoLEMAN AND J. J. MORE, Estimation of sparse Jacobian matrices and graph coloring
problems, SIAM J. Numer. Anal., 20 (1983), pp. 187-209.

- F. CoLEMAN AND J. J. MORE, Estimation of sparse Hessian matrices and graph coloring
problems, Math. Programming, 28 (1984), pp. 243-270.

T
T
T. F. CoLEMAN, B. S. GARBOW, AND J. J. MORE, Software for estimating sparse Hessian
T
T
A

M

P.

A.

M

- R. Curmis, M. J. D. POWELL, AND J. K. REID, On the estimation of sparse Jacobian
matrices, J. Inst. Math. Appl., 13 (1974), pp. 117-119.

- R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of
NP-completeness, W. H. Freeman, San Francisco, 1979.

E. GiL, W. MURRAY, M. A. SAUNDERS, AND M. H. WRIGHT, Computing forward-difference
intervals for numerical optimization, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 310-321.

GRIEWANK, Some bounds on complerity of gradients, Jacobians and Hessians, in Complexity
in Numerical Optimization, P. M. Pardalos, ed., World Scientific Publishing Co., River
Edge, NJ, 1993.

- GRIEWANK. D. JUEDES, AND J. UTKE, ADOL-C: A package for automatic differentiation of
algorithms written in C/C++, ACM Trans. Math. Software, 22 (1996), pp. 131-167.

- GRIEWANK, Direct calculation of Newton steps without accumulating Jacobians, in Large-
Scale Numerical Optimization, T. F. Coleman and Y. Li, eds., SIAM, Philadelphia, 1990,
pp. 115-137.

- K. M. S. HossAIN AND T. STEIHAUG, Computing a Sparse Jacobian Matriz by Rows and

Columns, Tech. Report 109, Department of Informatics, University of Bergen, Bergen,
1995.

. J. D. POWELL AND PH. L. TOINT, On the estimation of sparse Hessian matrices, SIAM J.
Numer. Anal., 16 (1979), pp. 1060-1074.

